Antimicrobial Potential of Andrographis paniculata Conjugated Gold Nanoparticle
Background: Herbal extracts have been traditionally used as antibacterial agents, and different strategies have been
proposed to enhance their antimicrobial activities. This research aimed to assess the antimicrobial potential of Andrographis paniculata conjugated gold nanoparticle (GNP) compounds against Escherichia coli and Bacillus subtilis.
Methods: Herbal extract was conjugated with GNP through electrostatic interaction, and characterization was carried out by Fourier-transmission infrared spectroscopy, screening electron microscopy, and transmission electron microscopy and supported by energy-dispersive X-ray spectroscopy. Antibacterial activity of the herbal extract and GNP conjugation was evaluated by disc diffusion assay.
Results: Chemical and morphological characterizations of the GNP and herbal extract conjugate revealed intactness of the GNP. In disc diffusion assay, the inhibition zone formed by these compounds was measured for both microorganisms, and they were in the range of 0.6-0.9 cm for the herbal extract. When the herbal extract conjugated with GNP, the zone was between 0.8 and 1.1 cm.
Conclusion: This study demonstrated the potentiality of GNP to carry the antibacterial compounds from the herbal extract.
Ramanathan, S.; Gopinath, S.C.B. Potentials in Synthesizing Nanostructured Silver Particles. Microsyst. Technol., 2017, 10, 1-13.
Gopinath, S.C.B.; Ramanathan, S.; Suk, K.H.; Ee Foo, M.; Anbu, P.; Uda, M.N.A. Engineered Nanostructures to Carry the Biological Ligands. MATEC Web Conf., 2018, 150, 6002.
Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev., 1999, 12(4), 564-82.
Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process., 2011, 89(3), 217-33.
Bono, D. R. S.; Krishnaiah, D.; Sarbatly, R.; Bono, A. Phytochemical Antioxidants for Health and Medicine a Move Towards Nature. Biotechnol. Mol. Biol. Rev., 2007, 1, 97-104.
Williams, G.C.; Nesse, R.M. The Dawn of Darwinian Medicine. Q. Rev. Biol., 2004, 66(1), 1-22.
Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-8.
Daszak, P.; Tabor, G.M.; Kilpatrick, A.M.; Epstein, J.; Plowright, R. Conservation Medicine and a New Agenda for Emerging Diseases. Ann. N. Y. Acad. Sci., 2004, 1026, 1-11.
Wasman, S.Q.; Mahmood, A.A.; Chua, L.S.; Alshawsh, M.A.;Hamdan, S. Antioxidant and Gastroprotective Activities of Andrographis paniculata (Hempedu bumi) in Sprague Dawley rats. Indian J. Exp. Biol., 2011, 49(10), 767-72.
Foo, M.E.; Anbu, P.; Gopinath, S.C.B.; Lakshmipriya, T.; Lee, C.G.; Yun, H. S.; Uda, M.N.A.; Yaakub, A.R.W. Antimicrobial Activity of Functionalized Single-walled Carbon Nanotube with Herbal Extract of Hempedu bumi. Surf. Interface Anal., 2018, 50(3), 354-61.
Kumar, R.A.; Sridevi, K.; Kumar, N.V.; Nanduri, S.; Rajagopal, S. Anticancer and Immunostimulatory Compounds from Andrographis Paniculata. J. Ethnopharmacol., 2004, 92(2-3), 291-5.
Zaidan, M.R.; Rain, A.N.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In Vitro Screening of Five Local Medicinal Plants for Antibacterial Activity Using Disc Diffusion Method. Trop. Biomed., 2005, 22(2), 165-70.
Roy, S.; Rao, K.; Bhuvaneswari, C.; Giri, A.; Mangamoori, L.N. Phytochemical Analysis of Andrographis Paniculata Extract and its Antimicrobial Activity. World J. Microbiol. Biotechnol., 2010, 26(1), 85-91.
Subramanian, R.; Asmawi, M.Z.; Sadikun, A. In Vitro α-Glucosidase and α-Amylase Enzyme Inhibitory Effects of Andrographis Paniculata Extract and Andrographolide. Acta Biochim. Pol., 2008, 55(2), 391-8.
Gopinath, S.C.B.; Kumar, P.K.R.; Tominaga, J. A BioDVD Media with Multilayered Structure is Suitable for Analyzing Biomolecular Interactions. J. Nanosci. Nanotechnol., 2011, 11(7), 1-7.
Gopinath, S.C.B.; Kumaresan, R.; Awazu, K.; Fujimaki, M.; Mizuhata, M.; Tominaga, J.; Kumar, P.K.R. Evaluation of Nucleic Acid Duplex Formation on Gold over Layers in Biosensor Fabricated Using Czochralski-Grown Single-Crystal Silicon Substrate. Anal. Bioanal. Chem., 2010, 398(2), 751-8.
Taniselass, S.; Md Arshad, M.K.; Gopinath, S.C.B. Current State of Green Reduction Strategies: Solution-Processed Reduced Graphene Oxide for Healthcare Biodetection. Mater. Sci. Eng. C, 2018, 96, 904-14.
Anasdass, J.R.; Kannaiyan, P.; Raghavachary, R.; Gopinath, S.C.B.; Chen, Y. Palladium Nanoparticle-Decorated Reduced Graphene Oxide Sheets Synthesized Using Ficus Carica Fruit Extract: A Catalyst for Suzuki Cross-Coupling Reactions. PLoS One, 2018, 13(2), 1-13.
Lakshmipriya, T.; Fujimaki, M.; Gopinath, S.C.B.; Awazu, K.; Horiguchi, Y.; Nagasaki, Y. A High-Performance Waveguide-Mode Biosensor for Detection of Factor IX Using PEG-Based Blocking Agents to Suppress Non-Specific Binding and Improve Sensitivity. Analyst, 2013, 138(10), 2863.
Lakshmipriya, T.; Horiguchi, Y.; Nagasaki, Y. Co-Immobilized Poly(Ethylene Glycol)-Block-Polyamines Promote Sensitivity and Restrict Biofouling on Gold Sensor Surface for Detecting Factor IX in Human Plasma. Analyst, 2014, 139(16), 3977-85.
Lakshmipriya, T.; Gopinath, S.C.B.; Citartan, M.; Hashim, U.; Tang, T.H. Gold Nanoparticle-Mediated High-Performance Enzyme-Linked Immunosorbent Assay for Detection of Tuberculosis ESAT-6 Protein. Micro Nanosyst., 2016, 8(2), 92-8.
Lakshmipriya, T.; Gopinath, S.C.B.; Tang, T.H. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay. PLoS One, 2016, 11(3), e151153.
Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Shimizu, K.; Shima, T. Observations of Immuno-Gold Conjugates on Influenza Viruses Using Waveguide-Mode Sensors. PLoS One, 2013, 8(7), 1-10.
Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Shimizu, K.; Mizutani, W.; Tsukagoshi, K. Surface Functionalization Chemistries on Highly Sensitive Silica-Based Sensor Chips. Analyst, 2012, 137(15), 3520.
Fujimaki, M.; Nomura, K.; Sato, K.; Kato, T.; Gopinath, S.C.B.; Wang, X.; Awazu, K.; Ohki, Y. Detection of Colored Nanomaterials Using Evanescent Field-Based Waveguide Sensors. Opt. Express, 2010, 18(15), 15732-40.
Arshad, M.K.M.; Adzhri, R.; Fathil, M.F.M.; Gopinath, S.C.B.;Md Nor, M.N.M. Field-Effect Transistor-Integration with TiO2 Nanoparticles for Sensing of Cardiac Troponin I Biomarker. J. Nanosci. Nanotechnol., 2018, 18(8), 5283-91.
Perumal, V.; Hashim, U.; Gopinath, S.C.B.; Haarindraprasad, R.; Poopalan, P.; Liu, W.W.; Ravichandran, M.; Balakrishnan, S.R.; Ruslinda, A.R. ANew Nano-Worm Structure from Gold-Nanoparticle Mediated Random Curving of Zinc Oxide Nanorods. Biosens. Bioelectron., 2016, 78, 14-22.
Letchumanan, I.; Md Arshad, M.K.; Balakrishnan, S.R.; Gopinath, S.C.B. Gold-Nanorod Enhances Dielectric Voltammetry Detection of c-Reactive Protein: A Predictive Strategy for Cardiac Failure. Biosens. Bioelectron., 2019, 130, 40-7.
Letchumanan, I.; Gopinath, S.C.B.; Md Arshad, M.K.; Anbu, P.; Lakshmipriya, T. Gold Nano-Urchin Integrated Label-Free Amperometric Aptasensing Human Blood Clotting Factor IX: A Prognosticative Approach for “Royal Disease.” Biosens. Bioelectron., 2019, 131, 128-35.
Liu, J.; Qin, G.; Raveendran, P.; Ikushima, Y.; Ikushima, Y. Facile “Green” Synthesis, Characterization, and Catalytic Function of Beta-D-Glucose-Stabilized Au Nanocrystals. Chemistry, 2006, 12(8), 2131-8.
Kuppusamy, P.; Yusoff, M.M.; Govindan, N. Biosynthesis of Metallic Nanoparticles Using Plant Derivatives and Their New Avenues in Pharmacological Applications an Updated Report. Saudi Pharm. J., 2014, 24(4), 473-84.
Khan, M.; Al-Marri, A.H.; Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R.H. Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora Persica L. Root (Miswak) Extract. Nanoscale Res. Lett., 2015, 10(1), 281.
Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem., 2011, 13, 2638-50.
Kasthuri, J.; Kathiravan, K.; Rajendiran, N. Phyllanthin-Assisted Biosynthesis of Silver and Gold Nanoparticles: A Novel Biological Approach. J. Nanopart. Res., 2009, 11(5), 1075-85.
Bankura, K.; Maity, D.; Mollick, M.M.R.; Mondal, D.; Bhowmick, B.; Roy, I.; Midya, T.; Sarkar, J.; Rana, D.; Acharya, K.; Chattopadhyay, D. Antibacterial Activity of Ag-Au Alloy NPs and Chemical Sensor Property of Au NPs Synthesized by Dextran. Carbohydr. Polym., 2014, 107(1), 151-7.
Rónavári, A.; Igaz, N.; Gopisetty, M.K.; Szerencsés, B.; Kovács, D.; Papp, C.; Vágvölgyi, C.; Boros, I.M.; Kónya, Z.; Kiricsi, M.; Pfeiffer, I. Biosynthesized Silver and Gold Nanoparticles Are Potent Antimycotics against Opportunistic Pathogenic Yeasts and Dermatophytes. Int. J. Nanomed., 2018, 13, 695-703.
Gopinath, S.C.B.; Perumal, V.; Kumaresan, R.; Lakshmipriya, T.; Rajintraprasad, H.; Rao, B.S.; Arshad, M.K.M.; Chen, Y.; Kotani, N.; Hashim, U. Nanogapped Impedimetric Immunosensor for the Detection of 16Â KDa Heat Shock Protein against Mycobacterium tuberculosis. Microchim. Acta, 2016, 183(10), 2697-703.
Perumal, V.; Saheed, M.S.M.; Mohamed, N.M.; Saheed, M.S.M.; Murthe, S. S.; Gopinath, S.C.B.; Chiu, J.M. Gold Nanorod Embedded Novel 3D Graphene Nanocomposite for Selective Bio-Capture in Rapid Detection of Mycobacterium tuberculosis. Biosens. Bioelectron., 2018, 116, 116-22.
Anniebell, S.; Gopinath, S.C.B. Polymer Conjugated Gold Nanoparticles in Biomedical Applications. Curr. Med. Chem., 2018, 25(12), 1433-45.
Ramanathan, S.; Gopinath, S.C.B.; Anbu, P.; Lakshmipriya, T.; Kasim, F.H.; Lee, C.G. Eco-friendly Synthesis of Solanum trilobatumExtract-Capped Silver Nanoparticles is Compatible with Good Antimicrobial Activities. J. Mole. Struct., 2018, 1160, 80-91. 20 and 100 nm scales are shown. Energy-dispersive X-ray spectrum clearly indicates the presence of gold.