Exosomes: A bridge of periodontitis and systemic diseases
Periodontitis, a common oral disease, is featured with complex etiology, progressive and prognosis varies according to the severity of periodontitis. Exosomes belong a kind of cystic vesicles with biological activity, which widely exist in human body fluids. Exosomes play an irreparable role in signal transmission and material exchange between cells, maintaining cell functions, and regulating body immunity and homeostasis. Exosomes are closely related to periodontitis, and recent study of exosomes has provided new directions and ideas for the diagnosis and treatment of periodontitis. Similarly, as extracellular vesicles, exosomes play a bridging role between periodontitis and some systemic diseases. In this process, exosomes participate in and regulate the process of systemic diseases by carrying nucleic acids, proteins, lipids, etc., and exhibit different bioactive effects according to the different substances carried in exosomes. In this paper, we summarize the latest research progress of exosomes, especially in the periodontitis and some systemic diseases, and review the potential value of exosomes in periodontitis diagnosis and treatments.
Song B, Zhang YL, Chen LJ, et al., 2017, The role of toll-like receptors in periodontitis. Oral Dis, 23(2): 168–180.
Hoare A, Soto C, Rojas-Celis V, et al., 2019, Chronic inflammation as a link between periodontitis and carcinogenesis. Mediators Inflamm, 2019: 1029857. https://doi.org/10.1155/2019/1029857
Lundmark A, Hu YO, Huss M, et al., 2019, Identification of salivary microbiota and its association with host inflammatory mediators in periodontitis. Front Cell Infect Microbiol, 9: 216. https://doi.org/10.3389/fcimb.2019.00216
Shi T, Jin Y, Miao Y, et al., 2020, IL-10 secreting B cells regulate periodontal immune response during periodontitis. Odontology, 108(3): 350–357. https://doi.org/10.1007/s10266-019-00470-2
Xu S, Zhang G, Guo JF, et al., 2021, Associations between osteoporosis and risk of periodontitis: A pooled analysis of observational studies. Oral Dis, 27(2): 357–369. https://doi.org/10.1111/odi.13531
Wang CJ, McCauley LK, 2016, Osteoporosis and periodontitis. Curr Osteoporos Rep, 14(6): 284–291. https://doi.org/10.1007/s11914-016-0330-3
Serni L, Caroti L, Barbato L, et al., 2021, Association between chronic kidney disease and periodontitis. A systematic review and metanalysis. Oral Dis, 2021: 14062. https://doi.org/10.1111/odi.14062
Parsegian K, Randall D, Curtis M, et al., 2022, Association between periodontitis and chronic kidney disease. Periodontol 2000, 89(1): 114–124. https://doi.org/10.1111/prd.12431
Liccardo D, Marzano F, Carraturo F, et al., 2020, Potential bidirectional relationship between periodontitis and Alzheimer’s disease. Front Physiol, 11: 683. https://doi.org/10.3389/fphys.2020.00683
Werber T, Bata Z, Vaszine ES, et al., 2021, The association of periodontitis and Alzheimer’s disease: How to hit two birds with one stone. J Alzheimers Dis, 84(1): 1–21. https://doi.org/10.3233/jad-210491
Leira Y, Seoane J, Blanco M, et al., 2017, Association between periodontitis and ischemic stroke: A systematic review and meta-analysis. Eur J Epidemiol, 32(1): 43–53. https://doi.org/10.1007/s10654-016-0170-6
Bengtsson VW, Persson GR, Berglund JS, et al., 2021, Periodontitis related to cardiovascular events and mortality: A long-time longitudinal study. Clin Oral Investig, 25(6): 4085–4095. https://doi.org/10.1007/s00784-020-03739-x
Sanz M, Del Castillo AM, Jepsen S, et al., 2020, Periodontitis and cardiovascular diseases. Consensus report. Global Heart, 15(1): 1.
Cardoso EM, Reis C, Manzanares-Céspedes MC, 2018, Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad Med, 130(1): 98–104. https://doi.org/10.1080/00325481.2018.1396876
Szatanek R, Baj-Krzyworzeka M, Zimoch J, et al., 2017, Methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci, 18(6): 1153. https://doi.org/10.3390/ijms18061153
Meldolesi J, 2018, Exosomes and ectosomes in intercellular communication. Curr Biol, 28(8): R435–R444. https://doi.org/10.1016/j.cub.2018.01.059
Latifkar A, Hur YH, Sanchez JC, et al., 2019, New insights into extracellular vesicle biogenesis and function. J Cell Sci, 132(13): jcs222406. https://doi.org/10.1242/jcs.222406
Console L, Scalise M, Indiveri C, 2019, Exosomes in inflammation and role as biomarkers. Clin Chim Acta, 488: 165–171. https://doi.org/10.1016/j.cca.2018.11.009
Chen BY, Sung CW, Chen C, et al., 2019, Advances in exosomes technology. Clin Chim Acta, 493: 14–19.
Peng Q, Yang JY, Zhou G, 2020, Emerging functions and clinical applications of exosomes in human oral diseases. Cell Biosci, 10: 68. https://doi.org/10.1186/s13578-020-00424-0
Nakao Y, Fukuda T, Zhang Q, et al., Exosomes from TNF- α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater, 122: 306–324. https://doi.org/10.1016/j.actbio.2020.12.046
Li D, Wang Y, Jin X, et al., 2020, NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation, 17(1): 126. https://doi.org/10.1186/s12974-020-01787-4
Fotuhi SN, Khalaj-Kondori M, Feizi MA, et al., 2019, Long non-coding RNA BACE1-as may serve as an Alzheimer’s disease blood-based biomarker. J Mol Neurosci, 69(3): 351–359. https://doi.org/10.1007/s12031-019-01364-2
Hadavand M, Hasni S, 2019, Exosomal biomarkers in oral diseases. Oral Dis, 25(1): 10–15. https://doi.org/10.1111/odi.12878
Croitoru IC, CrăiŢoiu Ş, Petcu CM, et al., 2016, Clinical, imagistic and histopathological study of chronic apical periodontitis. Rom J Morphol Embryol, 57(2 Suppl): 719–728.
Kinane DF, Stathopoulou PG, Papapanou PN, 2017, Periodontal diseases. Nat Rev Dis Primers, 3: 17038. https://doi.org/10.1038/nrdp.2017.38
Murakami S, Mealey BL, Mariotti A, et al., 2018, Dental plaque-induced gingival conditions. J Periodontol, 89(Suppl 1):S17–S27. https://doi.org/10.1002/jper.17-0095
Bui FQ, Almeida-da-Silva CL, Huynh B, et al., 2019, Association between periodontal pathogens and systemic disease. Biomed J, 42(1): 27–35. https://doi.org/10.1016/j.bj.2018.12.001
Dosseva-Panova VT, Popova CL, Panov VE, 2014, Subgingival microbial profile and production of proinflammatory cytokines in chronic periodontitis. Folia Med (Plovdiv), 56(3): 152–160. https://doi.org/10.2478/folmed-2014-0022
Mysak J, Podzimek S, Sommerova P, et al., 2014, Porphyromonas gingivalis: Major periodontopathic pathogen overview. J Immunol Res, 2014: 476068. https://doi.org/10.1155/2014/476068
Kulkarni PG, Gosavi S, Haricharan PB, et al., 2018, Molecular detection of Porphyromonas gingivalis in chronic periodontitis patients. J Contemp Dent Pract, 19(8): 992–996. https://doi.org/10.5005/jp-journals-10024-2371
Benakanakere M, Kinane DF, 2012, Innate cellular responses to the periodontal biofilm. Front Oral Biol, 15: 41–55. https://doi.org/10.1159/000329670
Silva LM, Brenchley L, Moutsopoulos NM, 2109, Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol Rev, 287(1): 226–235. https://doi.org/10.1111/imr.12724
Pan W, Wang Q, Chen Q, 2019, The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci, 11(3): 30. https://doi.org/10.1038/s41368-019-0064-z
Huang Y, Tang X, 2017, Research progress on the relationship between monocytes phagocyte system and periodontitis. Int J Stomatol, 44(5): 528–532.
Germic N, Frangez Z, Yousefi S, et al., 2019, Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ, 26(4): 715–727. https://doi.org/10.1038/s41418-019-0297-6
Pioli PD, 2019, Plasma cells, the next generation: Beyond antibody secretion. Front Immunol, 10: 2768. https://doi.org/10.3389/fimmu.2019.02768
Gadekar NB, Hosmani JV, Bhat KG, et al., 2018, Detection of antibodies against Aggregatibacter actinomycetemcomitans in serum and saliva through ELISA in periodontally healthy individuals and individuals with chronic periodontitis. Microb Pathog, 125: 438–442. https://doi.org/10.1016/j.micpath.2018.10.007
Weis-Garcia F, Carnahan RH, 2017, Characterizing antibodies. Cold Spring Harbor Protoc, 2017(11): pdb.top093823. https://doi.org/10.1101/pdb.top093823
Sheethal HS, Kn H, Smitha T, et al., 2018, Role of mast cells in inflammatory and reactive pathologies of pulp, periapical area and periodontium. J Oral Maxillofac Pathol, 22(1): 92–7.
Silva N, Abusleme L, Bravo D, et al., 2015, Host response mechanisms in periodontal diseases. J Appl Oral Sci, 23(3): 329–355. https://doi.org/10.1590/1678-775720140259
Garlet GP, 2010, Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints. J Dent Res, 89(12): 1349–1363. https://doi.org/10.1177/0022034510376402
Li J, Casanova JL, Puel A, 2018, Mucocutaneous IL-17 immunity in mice and humans: Host defense vs. excessive inflammation. Mucosal Immunol, 11(3): 581–589. https://doi.org/10.1038/mi.2017.97
Abdulkhaleq LA, Assi MA, Abdullah R, et al., 2018, The crucial roles of inflammatory mediators in inflammation: A review. Vet World, 11(5): 627–635. https://doi.org/10.14202/vetworld.2018.627-635
Arbab M, Tahir S, Niazi MK, et al., 2017, TNF-α genetic predisposition and higher expression of inflammatory pathway components in keratoconus. Invest Ophthalmol Vis Sci, 58(9): 3481–3487. https://doi.org/10.1167/iovs.16-21400
Majumder P, Thou K, Bhattacharya M, et al., 2018, Association of tumor necrosis factor-α (TNF-α) gene promoter polymorphisms with aggressive and chronic periodontitis in the Eastern Indian population. Biosci Rep, 38(4): BSR20171212. https://doi.org/10.1042/bsr20171212
Seutter S, Winfield J, Esbitt A, et al., 2020, Interleukin 1β and prostaglandin E2 affect expression of DNA methylating and demethylating enzymes in human gingival fibroblasts. Int immunopharmacol, 78: 105920. https://doi.org/10.1016/j.intimp.2019.105920
Grga D, Dzeletović B, Damjanov M, et al., 2013, Prostaglandin E2 in apical tissue fluid and postoperative pain in intact and teeth with large restorations in two endodontic treatment visits. Srp Arh Celok Lek, 141(1–2): 17–21. https://doi.org/10.2298/sarh1302017g
Offenbacher S, Heasman PA, Collins JG, 1993, Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol, 64(5 Suppl): 432–444. https://doi.org/10.1902/jop.1993.64.5.432
Oduncuoglu BF, Kayar NA, Haliloglu S, et al, 2018, Effects of a cyclic NSAID regimen on levels of gingival crevicular fluid prostaglandin E(2)and Interleukin-1β: A 6-month randomized controlled clinical trial. Niger J Clin Pract, 21(5): 658–666. https://doi.org/10.4103/njcp.njcp_221_17
Cox SW, Eley BM, Kiili M, et al., 2006, Collagen degradation by interleukin-1beta-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases. Oral Dis, 12(1): 34–40. https://doi.org/10.1111/j.1601-0825.2005.01153.x
Álvares PR, Arruda JA, Silva LP, et al., 2017, Immunohistochemical expression of TGF-β1 and MMP-9 in periapical lesions. Braz Oral Res, 31: e51. https://doi.org/10.1590/1807-3107bor-2017.vol31.0051
Cocucci E, Meldolesi J, 2015, Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol, 25(6): 364–372. https://doi.org/10.1016/j.tcb.2015.01.004
Doyle LM, Wang MZ, 2019, Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7): 727. https://doi.org/10.3390/cells8070727
Mashouri L, Yousefi H, Aref AR, et al., 2019, Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer, 18(1): 75. https://doi.org/10.1186/s12943-019-0991-5
Mathivanan S, Ji H, Simpson RJ, 2010, Exosomes: Extracellular organelles important in intercellular communication. J Proteom, 73(10): 1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006
Kalluri R, LeBleu VS, 2020, The biology, function, and biomedical applications of exosomes. Science, 367(6478): eaau6977. https://doi.org/10.1126/science.aau6977
Emanueli C, Shearn AI, Angelini GD, et al., 2015, Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol, 71: 24–30. https://doi.org/10.1016/j.vph.2015.02.008
Cai J, Wu J, Wang J, et al., 2020, Extracellular vesicles derived from different sources of mesenchymal stem cells: Therapeutic effects and translational potential. Cell Biosci, 10: 69. https://doi.org/10.1186/s13578-020-00427-x
Liang B, He X, Zhao YX, et al., 2020, Advances in exosomes derived from different cell sources and cardiovascular diseases. Biomed Res Int, 2020: 7298687. https://doi.org/10.1155/2020/7298687
Gurunathan S, Kang MH, Jeyaraj M, et al., 2019, Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 8(4): 307. https://doi.org/10.3390/cells10020462
Xunian Z, Kalluri R, 2020, Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci, 111(9): 3100–3110. https://doi.org/10.1111/cas.14563
Milane L, Singh A, Mattheolabakis G, et al., 2015, Exosome mediated communication within the tumor microenvironment. J Control Release, 219: 278–294. https://doi.org/10.1016/j.jconrel.2015.06.029
Yáñez-Mó M, Siljander PR, Andreu Z, et al., 2015, Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 4: 27066.
van Niel GV, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 19: 213–228. https://doi.org/10.1038/nrm.2017.125
Record M, Silvente-Poirot S, Poirot M, et al., 2018, Extracellular vesicles: Lipids as key components of their biogenesis and functions. J Lipid Res, 59(8): 1316–1324. https://doi.org/10.1194/jlr.e086173
Phuyal S, Hessvik NP, Skotland T, et al., 2014, Regulation of exosome release by glycosphingolipids and flotillins. FEBS J, 281(9): 2214–2227. https://doi.org/10.1111/febs.12775
Raposo G, Stoorvogel W, 2013, Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol, 200(4): 373–383. https://doi.org/10.1083/jcb.201211138
Zhang Y, Liu Y, Liu H, et al., 2019, Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci, 9: 19. https://doi.org/10.1186/s13578-019-0282-2
Deng H, Sun C, Sun Y, et al., 2018, Lipid, protein, and MicroRNA composition within mesenchymal stem cell-derived exosomes. Cell Reprogram, 20(3): 178–186. https://doi.org/10.1089/cell.2017.0047
Barile L, Vassalli G, 2017, Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther, 174: 63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020
Crescitelli R, Lässer C, Szabó TG, et al., 2013, Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles, 12: 2. https://doi.org/10.3402/jev.v2i0.20677
Zhang J, Li S, Li L, et al., 2015, Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom Proteom Bioinform, 13(1): 17–24. https://doi.org/10.1016/j.gpb.2015.02.001
Fabbri M, Paone A, Calore F, et al., 2012, MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A, 109(31): E2110–E2116. https://doi.org/10.1073/pnas.1209414109
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, et al., 2016, Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. 5: e19276. https://doi.org/10.1101/040238
Samanta S, Rajasingh S, Drosos N, et al., 2018, Exosomes: New molecular targets of diseases. Acta Pharmacol Sin, 39(4): 501–513. https://doi.org/10.1038/aps.2017.162
Zhang L, Yu D, 2019, Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer, 1871(2): 455–468.
Lane RE, Korbie D, Trau M, et al., 2017, Purification protocols for extracellular vesicles. Methods Mol Biol (Clifton, NJ), 1660: 111–130. https://doi.org/10.1007/978-1-4939-7253-1_10
Momen-Heravi F, 2017, Isolation of extracellular vesicles by ultracentrifugation. Methods Mol Biol (Clifton, NJ). 1660: 25–32. https://doi.org/10.1007/978-1-4939-7253-1_3
Cao F, Gao Y, Chu Q, et al., 2019, Proteomics comparison of exosomes from serum and plasma between ultracentrifugation and polymer-based precipitation kit methods. Electrophoresis, 40(23–24): 3092–3098. https://doi.org/10.1002/elps.201900295
Zhang Z, Wang C, Li T, et al., 2014, Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes. Oncol Lett, 8(4): 1701–1706. https://doi.org/10.3892/ol.2014.2373
He L, Zhu D, Wang J, et al., 2019, A highly efficient method for isolating urinary exosomes. Int J Mol Med, 43(1): 83–90.
Li M, Lou D, Chen J, et al., 2021, Deep dive on the proteome of salivary extracellular vesicles: Comparison between ultracentrifugation and polymer-based precipitation isolation. Anal Bioanal Chem, 413(2): 365–375. https://doi.org/10.1007/s00216-020-03004-w
Greening DW, Xu R, Ji H, et al., 2015, A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol (Clifton, NJ), 1295: 179–209. https://doi.org/10.1007/978-1-4939-2550-6_15
Chiricosta L, Silvestro S, Gugliandolo A, et al., 2020, Extracellular vesicles of human periodontal ligament stem cells contain MicroRNAs associated to proto-oncogenes: Implications in cytokinesis. Front Genet, 11: 582. https://doi.org/10.3389/fgene.2020.00582
Fernández A, Cárdenas AM, Astorga J, et al., 2019, Expression of toll-like receptors 2 and 4 and its association with matrix metalloproteinases in symptomatic and asymptomatic apical periodontitis. Clin Oral Investig, 23(12): 4205–4212. https://doi.org/10.1007/s00784-019-02861-9
Choi JW, Kim SC, Hong SH, et al., 2017, Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J Dent Res, 96(4): 458–616. https://doi.org/10.1177/0022034516685071
Cafferata EA, Castro-Saavedra S, Fuentes-Barros G, et al., 2021, Boldine inhibits the alveolar bone resorption during ligature-induced periodontitis by modulating the Th17/Treg imbalance. J Periodontol, 92(1): 123–136. https://doi.org/10.1002/jper.20-0055
Zheng Y, Dong C, Yang J, et al., 2109, Exosomal microRNA- 155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis. J Cell Physiol, 234(11): 20662–20674. https://doi.org/10.1002/jcp.28671
Herbert BA, Novince CM, Kirkwood KL, 2016, Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis. Mol Oral Microbiol, 31(3): 207–227. https://doi.org/10.1111/omi.12119
Han EC, Choi SY, Lee Y, et al., 2019, Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J, 33(12): 13412–13422. https://doi.org/10.1096/fj.201901575r
Yu J, Lin Y, Xiong X, et al., 2019, Detection of exosomal PD-L1 RNA in saliva of patients with periodontitis. Front Genet, 10: 202. https://doi.org/10.3389/fgene.2019.00202
Huang X, Hu X, Zhao M, et al., 2020, Analysis of salivary exosomal proteins in young adults with severe periodontitis. Oral Dis, 26(1): 173–181. https://doi.org/10.1111/odi.13217
Brosseau C, Colas L, Magnan A, et al., 2018, CD9 tetraspanin: A new pathway for the regulation of inflammation? Front Immunol, 9: 2316. https://doi.org/10.3389/fimmu.2018.02316
Zhao LR, Mao JQ, Zhao BJ, et al., 2019, Isolation and biological characteristics of exosomes derived from periodontal ligament stem cells. Shanghai Kou Qiang Yi Xue, 28(4): 343–348.
Zhao M, Dai W, Wang H, et al., 2019, Periodontal ligament fibroblasts regulate osteoblasts by exosome secretion induced by inflammatory stimuli. Arch Oral Biol, 105: 27–34. https://doi.org/10.1016/j.archoralbio.2019.06.002
Papadopoulos G, Kramer CD, Slocum CS, et al., 2014, A mouse model for pathogen-induced chronic inflammation at local and systemic sites. J Vis Exp, 90: e51556. https://doi.org/10.3791/51556
Wang M, Li J, Ye Y, et al., 2020, SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation, 111: 1–11. https://doi.org/10.1016/j.diff.2019.10.003
Straka M, Straka-Trapezanlidis M, Deglovic J, et al., 2015, Periodontitis and osteoporosis. Neuroendocrinol Lett, 36(5): 401–406.
Abdi K, Chen T, Klein BA, et al., 2017, Mechanisms by which Porphyromonas gingivalis evades innate immunity. PLoS One, 12(8): e0182164. https://doi.org/10.1371/journal.pone.0182164
Sun W, Zhao C, Li Y, et al., 2016, Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov, 2: 16015. https://doi.org/10.1038/celldisc.2016.15
Chunhui HU, Yinghua LI, Zhi Q, et al., 2019, Proteomics analysis of serum exosomes and its application in osteoporosis. Chin J Chromatogr, 37(8): 863–871.
Wang Z, Sun D, 2018, Adipose-derived mesenchymal stem cells: A new tool for the treatment of renal fibrosis. Stem Cells Dev, 27(20): 1406–1411. https://doi.org/10.1089/scd.2017.0304
Zhao T, Sun F, Liu J, et al., 2019, Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther, 14(6): 482–494. https://doi.org/10.2174/1574888x14666190228103230
Nogueira A, Pires MJ, Oliveira PA, 2017, Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo (Athens, Greece), 31(1): 1–22. https://doi.org/10.21873/invivo.11019
Meng XM, Inflammatory mediators and renal fibrosis. Adv Exp Med Biol, 1165: 381–406.
Berchtold L, Friedli I, Vallée JP, et al., 2017, Diagnosis and assessment of renal fibrosis: The state of the art. Swiss Med Wkly, 147: w14442. https://doi.org/10.4414/smw.2017.14442
Khalaf H, Lönn J, Bengtsson T, 2014, Cytokines and chemokines are differentially expressed in patients with periodontitis: Possible role for TGF-β1 as a marker for disease progression. Cytokine, 67(1): 29–35. https://doi.org/10.1016/j.cyto.2014.02.007
Meng XM, Nikolic-Paterson DJ, Lan HY, 2016, TGF-β: The master regulator of fibrosis. Nat Rev Nephrol, 12(6): 325–338. https://doi.org/10.1038/nrneph.2016.48
Ma TT, Meng XM, 2019, TGF-β/smad and renal fibrosis. Adv Exp Med Biol, 1165: 347–364.
Chen P, Xuan DY, Zhang JC, 2017, Periodontitis aggravates kidney damage in obese mice by MMP2 regulation. Bratisl Lek Listy, 118(12): 740–745. https://doi.org/10.4149/bll_2017_140
Borges FT, Melo SA, Özdemir BC, et al, 2013, TGF-β1- containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol, 24(3): 385–392.https://doi.org/10.3410/f.717988251.793472538
Sonoda H, Lee BR, Park KH, et al., 2019, miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep, 9(1): 4692. https://doi.org/10.1038/s41598-019-40747-8
Weller J, Budson A, 2018, Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research, 7: F1000 Faculty Rev–1161. https://doi.org/10.12688/f1000research.14506.1
Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, et al., 2019, A systematic review of MicroRNA expression as biomarker of late-onset Alzheimer’s disease. Mol Neurobiol, 56(12): 8376–8391. https://doi.org/10.1007/s12035-019-01676-9
Singhrao SK, Harding A, Poole S, et al., 2015, Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflam, 2015: 137357. https://doi.org/10.1155/2015/137357
Wu Z, Nakanishi H, 2014, Connection between periodontitis and Alzheimer’s disease: Possible roles of microglia and leptomeningeal cells. J Pharmacol Sci, 126(1): 8–13. https://doi.org/10.1254/jphs.14r11cp
Ide M, Harris M, Stevens A, et al., 2016, Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One, 11(3): e0151081. https://doi.org/10.1371/journal.pone.0151081
Saman S, Lee NC, Inoyo I, et al., 2014, Proteins recruited to exosomes by tau overexpression implicate novel cellular mechanisms linking tau secretion with Alzheimer’s disease. J Alzheimers Dis, 40(Suppl 1): S47–S70. https://doi.org/10.3233/jad-132135
Vella LJ, Hill AF, Cheng L, 2016, Focus on extracellular vesicles: Exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and Parkinson’s disease. Int J Mol Sci, 17(2): 173. https://doi.org/10.3390/ijms17020173
Trotta T, Panaro MA, Cianciulli A, et al., 2018, Microglia-derived extracellular vesicles in Alzheimer’s disease: A double-edged sword. Biochem Pharmacol, 148: 184–192. https://doi.org/10.1016/j.bcp.2017.12.020
Li D, Li YP, Li YX, et al., 2018, Effect of regulatory network of exosomes and microRNAs on neurodegenerative diseases. Chin Med J (Engl), 131(18): 2216–2225. https://doi.org/10.4103/0366-6999.240817
Zheng T, Pu J, Chen Y, et al., 2017, Plasma exosomes spread and cluster around β-amyloid plaques in an animal model of Alzheimer’s disease. Front Aging Neurosci, 9: 12. https://doi.org/10.3389/fnagi.2017.00012
Isabel C, Calvet D, Mas JL, 2016, Stroke prevention. Presse Med, 45(12 Pt 2): e457-e471. https://doi.org/10.1016/j.lpm.2016.10.009
Zhang ZG, Chopp M, 2016, Exosomes in stroke pathogenesis and therapy. J Clin Investig, 126(4): 1190–1197.
Sen S, Giamberardino LD, Moss K, et al., 2018, Periodontal disease, regular dental care use, and incident ischemic stroke. Stroke, 49(2): 355–362. https://doi.org/10.1161/strokeaha.117.018990
Yousuf O, Mohanty BD, Martin SS, et al., 2013, High-sensitivity C-reactive protein and cardiovascular disease: A resolute belief or an elusive link? J Am Coll Cardiol, 62(5): 397–408.
Pietiäinen M, Liljestrand JM, Kopra E, et al., 2018, Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci, 126(Suppl 1): 26–36. https://doi.org/10.1111/eos.12423
Chen Y, Song Y, Huang J, et al., 2017, Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol, 8: 57. https://doi.org/10.3389/fneur.2017.00057
Li DB, Liu JL, Wang W, et al., 2017, Plasma exosomal miR- 422a and miR-125b-2-3p serve as biomarkers for ischemic stroke. Curr Neurovasc Res, 14(4): 330–337. https://doi.org/10.2174/1567202614666171005153434
Ji Q, Ji Y, Peng J, et al., 2016, Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One, 11(9): e0163645. https://doi.org/10.1371/journal.pone.0163645
Van Camp G, 2014, Cardiovascular disease prevention. Acta Clin Belg, 69: 407–411.
Khumaedi AI, Purnamasari D, Wijaya IP, et al., 2019, The relationship of diabetes, periodontitis and cardiovascular disease. Diabetes Metab Syndr, 13(2): 1675–1678. https://doi.org/10.1016/j.dsx.2019.03.023
Mahalakshmi K, Krishnan P, Arumugam SB, 2017, Association of periodontopathic anaerobic bacterial co-occurrence to atherosclerosis a cross-sectional study. Anaerobe, 44: 66–72. https://doi.org/10.1016/j.anaerobe.2017.02.003
Badimon L, Peña E, Arderiu G, et al., 2018, C-reactive protein in atherothrombosis and angiogenesis. Front Immunol, 9: 430. https://doi.org/10.3389/fimmu.2018.00430
Chistiakov DA, Orekhov AN, Bobryshev YV, 2015, Extracellular vesicles and atherosclerotic disease. Cell Mol Life Sci, 72(14): 2697–2708. https://doi.org/10.1007/s00018-015-1906-2
Wang C, Zhang C, Liu L, et al., 2017, Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther, 25(1): 192–204. https://doi.org/10.1016/j.ymthe.2016.09.001
Widera C, Gupta SK, Lorenzen JM, et al., 2011, Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol, 51(5): 872–875. https://doi.org/10.1016/j.yjmcc.2011.07.011
Atsawasuwan P, Lazari P, Chen Y, et al., 2018, Secretory microRNA-29 expression in gingival crevicular fluid during orthodontic tooth movement. PLoS One, 13(3): e0194238. https://doi.org/10.1371/journal.pone.0194238
Tomofuji T, Yoneda T, Machida T, et al., 2016, MicroRNAs as serum biomarkers for periodontitis. J Clin Periodontol, 43(5): 418–425. https://doi.org/10.1111/jcpe.12536
Micó-Martínez P, García-Giménez JL, Seco-Cervera M, et al., 2018, miR-1226 detection in GCF as potential biomarker of chronic periodontitis: A pilot study. Med Oral Patol Oral Cir Bucal, 23(3): e308–e314. https://doi.org/10.4317/medoral.22329
Shi H, Jiang X, Xu C, et al., 2022, MicroRNAs in serum exosomes as circulating biomarkers for postmenopausal osteoporosis. Front Endocrinol, 13: 819056. https://doi.org/10.3389/fendo.2022.819056
Sun Y, Kuek V, Liu Y, et al., 2018, MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol, 234(1): 231–245. https://doi.org/10.1002/jcp.26856
Lv CY, Ding WJ, Wang YL, et al., 2018, A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR- 29c and miR-21 analysis. Int Urol Nephrol, 50(5): 973–982. https://doi.org/10.1007/s11255-017-1779-4
Solé C, Cortés-Hernández J, Felip ML, et al., 2015, miR- 29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant, 30(9): 1488– 1496. https://doi.org/10.1093/ndt/gfv128
Gudehithlu KP, Hart P, Joshi A, et al., 2019, Urine exosomal ceruloplasmin: A potential early biomarker of underlying kidney disease. Clin Exp Nephrol, 23(8): 1013–1021. https://doi.org/10.1007/s10157-019-01734-5
Chun-Yan L, Zi-Yi Z, Tian-Lin Y, et al., Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome. Exp Mol Pathol, 2018, 105(2): 223–228. https://doi.org/10.1016/j.yexmp.2018.08.004
Tan L, Yu JT, Tan MS, et al., 2014, Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis, 40(4): 1017–1027. https://doi.org/10.3233/jad-132144
Riancho J, Vázquez-Higuera JL, Pozueta A, et al., 2017, MicroRNA profile in patients with Alzheimer’s disease: Analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimers Dis, 57(2): 483–491. https://doi.org/10.3233/jad-161179
Zhang M, Han W, Xu Y, et al., 2021, Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer’s disease. Neuropsychiatr Dis Treat, 17: 269–275. https://doi.org/10.2147/ndt.s290925
Tan L, Yu JT, Liu QY, et al., 2014, Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci, 336(1–2): 52–56.
Sun X, Lv J, Chen D, et al., 2019, Serum miR-599 serves as a biomarker for ischemic stroke patients. Clin Lab, 65(7): 181256. https://doi.org/10.7754/clin.lab.2019.181256
Liu G, Cao C, Zhu M, 2019, Peripheral blood miR-451 may serve as a biomarker of ischemic stroke. Clin Lab, 65(9): 190309. https://doi.org/10.7754/clin.lab.2019.190309
Du L, Xu Z, Wang X, et al., 2020, Integrated bioinformatics analysis identifies microRNA-376a-3p as a new microRNA biomarker in patient with coronary artery disease. Am J Transl Res, 12(2): 633–648.
Lu T, Li X, Long C, et al., 2021, Circulating miR-27b as a biomarker of the development and progression of carotid artery stenosis. Clin Appl Thromb Hemost, 27: 10760296211057903. https://doi.org/10.1177/10760296211057903
Maciejak A, Kostarska-Srokosz E, Gierlak W, et al., 2018, Circulating miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction. Sci Rep, 8(1): 9883. https://doi.org/10.1038/s41598-018-28118-1
Ali W, Mishra S, Rizvi A, et al., 2021, Circulating microRNA-126 as an independent risk predictor of coronary artery disease: A case-control study. EJIFCC, 32(3): 347–362.
Lan F, Qing Q, Pan Q, et al., 2018, Serum exosomal miR- 301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol (Dordrecht), 41(1): 25–33. https://doi.org/10.1007/s13402-017-0355-3
Tang Y, Zhao Y, Song X, et al., 2019, Tumor-derived exosomal miRNA-320d as a biomarker for metastatic colorectal cancer. J Clin Lab Anal, 33(9): e23004. https://doi.org/10.1002/jcla.23004
Guo CM, Liu SQ, Sun MZ, 2020, miR-429 as biomarker for diagnosis, treatment and prognosis of cancers and its potential action mechanisms: A systematic literature review. Neoplasma, 67(2): 215–228. https://doi.org/10.4149/neo_2019_190401n282
Zhao T, Meng W, Chin Y, et al., 2021, Identification of miR‑25‑3p as a tumor biomarker: Regulation of cellular functions via TOB1 in breast cancer. Mol Med Rep, 23(6): 406. https://doi.org/10.3892/mmr.2021.12045
Zhang J, Li D, Zhang R, et al., 2020, The miR-21 potential of serving as a biomarker for liver diseases in clinical practice. Biochem Soc Trans, 48(5): 2295–2305. https://doi.org/10.1042/bst20200653
Han J, Li J, Qian Y, et al., 2109, Identification of plasma miR-148a as a noninvasive biomarker for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol, 43(5): 585–593.
Chew JR, Chuah SJ, Teo KY, et al., 2019, Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater, 89: 252–264. https://doi.org/10.1016/j.actbio.2019.03.021
Oishi Y, Manabe I, 2018, Macrophages in inflammation, repair and regeneration. Int Immunol, 30(11): 511–528.
Wang R, Ji Q, Meng C, et al., 2020, Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions. Int Immunopharmacol, 81: 106030. https://doi.org/10.1016/j.intimp.2019.106030
Liao W, Du Y, Zhang C, et al., 2019, Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater, 86: 1–14. https://doi.org/10.1016/j.actbio.2018.12.045
Mohammed E, Khalil E, Sabry D, 2018, Effect of adipose-derived stem cells and their exo as adjunctive therapy to nonsurgical periodontal treatment: A histologic and histomorphometric study in rats. Biomolecules, 8(4): 167. https://doi.org/10.3390/biom8040167
Wei J, Song Y, Du Z, et al., 2020, Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promoting osteogenesis. J Mol Histol, 51(4): 455–466. https://doi.org/10.1007/s10735-020-09896-3
Xie Y, Hu JH, Wu H, et al., 2019, Bone marrow stem cells derived exosomes improve osteoporosis by promoting osteoblast proliferation and inhibiting cell apoptosis. Eur Rev Med Pharmacol Sci, 23(3): 1214–1220.
Nargesi AA, Lerman LO, Eirin A, 2017, Mesenchymal stem cell-derived extracellular vesicles for kidney repair: Current status and looming challenges. Stem Cell Res Ther, 8(1): 273. https://doi.org/10.1186/s13287-017-0727-7
Nagaishi K, Mizue Y, Chikenji T, et al., 2016, Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep, 6: 34842. https://doi.org/10.1038/srep34842
Sato YT, Umezaki K, Sawada S, et al., 2016, Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep, 6: 21933. https://doi.org/10.1038/srep21933
Li Y, Ren C, Li H, et al., 2019, Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. Neuroreport, 30(12): 834–841. https://doi.org/10.1097/wnr.0000000000001280
Inoue T, Sugiyama M, Hattori H, et al., 2013, Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A, 19(1–2): 24–29. https://doi.org/10.1089/ten.tea.2011.0385
Chen GH, Xu J, Yang YJ, 2017, Exosomes: Promising sacks for treating ischemic heart disease? Am J Physiol Heart Circ Physiol, 313(3): H508–H523. https://doi.org/10.1152/ajpheart.00213.2017
Luo Q, Guo D, Liu G, et al., 2017, Exosomes from MiR- 126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem, 44(6): 2105–2116. https://doi.org/10.1159/000485949