Recent insights into USP7: Construct, pathophysiology, and inhibitors
The ubiquitin-proteasome pathway (UPP) is essential for proteostasis and cellular homeostasis. Most of the human proteins are degraded through the UPP in which proteins should be tagged with a specific polyubiquitin chain in a sequential cascade of E1 ubiquitin (Ub)-activating enzymes, namely, E2 Ub-conjugating enzymes and E3 Ub ligases. Meanwhile, the ubiquitination process can be reversed by deubiquitinating enzymes (DUBs), which protect the target proteins from ubiquitination, and so far, around 100 DUBs have been reported to present in human cells. Ubiquitin-specific protease 7 (USP7) is a member of the DUBs family, which has been reported to play crucial role in the development of human tumors and diseases; however, the molecular mechanisms of disease and malignant tumor progression mediated by USP7 has not been fully elucidated. In addition, the therapeutic potential of USP7 in cancer treatment remains to be further explored. Therefore, this review begins with a review of the structure and function of USP7, and then focuses on the development of USP7 inhibitors and their potential applications in various human diseases.
Nakamura N, 2018, Ubiquitin system. Int J Mol Sci, 19(4): 1080. https://doi.org/10.3390/ijms19041080
Hershko A, Heller H, Elias S, et al., 1983, Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem, 258(13): 8206–8214.
Xu P, Duong DM, Seyfried NT, et al., 2009, Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1): 133–145. https://doi.org/10.1016/j.cell.2009.01.041
Nijman SM, Luna-Vargas MP, Velds A, et al., 2005, A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5): 773–786. https://doi.org/10.1016/j.cell.2005.11.007
Poondla N, Chandrasekaran AP, Kim KS, et al., 2019, Deubiquitinating enzymes as cancer biomarkers: New therapeutic opportunities? BMB Rep, 52(3): 181–189. https://doi.org/10.5483/BMBRep.2019.52.3.048
Pozhidaeva A, Bezsonova I, 2019, USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst), 76: 30–39. https://doi.org/10.1016/j.dnarep.2019.02.005
Wang S, Juan J, Zhang Z, et al., 2017, Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis, 8(9): e3058. https://doi.org/10.1038/cddis.2017.450
Zhang C, Chen Y, Gan X, et al., 2017, SAK-HV decreases the self-ubiquitination of MEKK1 to promote macrophage proliferation via MAPK/ERK and JNK Pathways. Int J Mol Sci, 18(4): 835. https://doi.org/10.3390/ijms18040835
Lork M, Verhelst K, Beyaert R, 2017, CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: So similar, yet so different. Cell Death Differ, 24(7): 1172–1183. https://doi.org/10.1038/cdd.2017.46
Song MS, Salmena L, Carracedo A, et al., 2008, The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature, 455(7214): 813–817. https://doi.org/10.1038/nature07290
Jacq X, Kemp M, Martin NM, et al., 2013, Deubiquitylating enzymes and DNA damage response pathways. Cell Biochem Biophys, 67(1): 25–43. https://doi.org/10.1007/s12013-013-9635-3
Mathien S, Déléris P, Soulez M, et al., 2017, Deubiquitinating enzyme USP20 regulates extracellular signal-regulated kinase 3 stability and biological activity. Mol Cell Biol, 37(9): e00432–16. https://doi.org/10.1128/MCB.00432-16
Kim SY, Baek KH, 2019, TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci, 76(4): 653–665. https://doi.org/10.1007/s00018-018-2949-y
Sun T, Liu Z, Yang Q, 2020, The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer, 19(1): 146.
Wang Q, Ma S, Song N, et al., 2016, Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest, 126(6): 2205–2220. https://doi.org/10.1172/JCI85747
Zhan M, Sun X, Liu J, et al., 2017, Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway. Biochem Biophys Res Commun, 484(2): 429–434. https://doi.org/10.1016/j.bbrc.2017.01.144
Jin Q, Martinez CA, Arcipowski KM, et al., 2019, USP7 cooperates with NOTCH1 to drive the oncogenic transcriptional program in T-cell leukemia. Clin Cancer Res, 25(1): 222–239. https://doi.org/10.1158/1078-0432.CCR-18-1740
Wang M, Zhang Y, Wang T, et al., 2017, The USP7 inhibitor P5091 induces cell death in ovarian cancers with different P53 status. Cell Physiol Biochem, 43(5): 1755–1766. https://doi.org/10.1159/000484062
Zhao GY, Lin ZW, Lu CL, et al., 2015, USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma. Tumour Biol, 36(3): 1721–1729. https://doi.org/10.1007/s13277-014-2773-4
He Y, Wang S, Tong J, et al., 2020, The deubiquitinase USP7 stabilizes maf proteins to promote myeloma cell survival. J Biol Chem, 295(7): 2084–2096. https://doi.org/10.1074/jbc.RA119.010724
Li M, Brooks CL, Kon N, et al., 2004, A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell, 13(6): 879–886. https://doi.org/10.1016/s1097-2765(04)00157-1
Nicklas S, Hillje AL, Okawa S, et al., 2019, A complex of the ubiquitin ligase TRIM32 and the deubiquitinase USP7 balances the level of c-Myc ubiquitination and thereby determines neural stem cell fate specification. Cell Death Differ, 26(4): 728–740. https://doi.org/10.1038/s41418-018-0144-1
Zheng N, Chu M, Lin M, et al., 2020, USP7 stabilizes EZH2 and enhances cancer malignant progression. Am J Cancer Res, 10(1): 299–313.
Li M, Chen D, Shiloh A, et al., 2002, Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature, 416(6881): 648–653. https://doi.org/10.1038/nature737
Tavana O, Gu W, 2017, Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J Mol Cell Biol, 9(1): 45–52. https://doi.org/10.1093/jmcb/mjw049
Brooks CL, Li M, Hu M, et al., 2007, The p53--Mdm2-- HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene, 26(51): 7262–7266. https://doi.org/10.1038/sj.onc.1210531
Ma J, Martin JD, Xue Y, et al., 2010, C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site. Arch Biochem Biophys, 503(2): 207–212. https://doi.org/10.1016/j.abb.2010.08.020
Komander D, Clague MJ, Urbé S, 2009, Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol, 10(8): 550–563. https://doi.org/10.1038/nrm2731
Faesen AC, Luna-Vargas MP, Sixma TK, 2012, The role of UBL domains in ubiquitin-specific proteases. Biochem Soc Trans, 40(3): 539–545. https://doi.org/10.1042/BST20120004
Faesen AC, Dirac AM, Shanmugham A, et al., 2011, Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Mol Cell, 44(1): 147–159. https://doi.org/10.1016/j.molcel.2011.06.034
Kim RQ, van Dijk WJ, Sixma TK, 2016, Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role. J Struct Biol, 195(1): 11–18. https://doi.org/10.1016/j.jsb.2016.05.005
van der Knaap JA, Kumar BR, Moshkin YM, et al., 2005, GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol Cell, 17(5): 695–707. https://doi.org/10.1016/j.molcel.2005.02.013
Cotto-Rios XM, Békés M, Chapman J, et al., 2012, Deubiquitinases as a signaling target of oxidative stress. Cell Rep, 2(6): 1475–1484. https://doi.org/10.1016/j.celrep.2012.11.011
Hu M, Li P, Li M, et al., 2002, Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell, 111(7): 1041–1054. https://doi.org/10.1016/s0092-8674(02)01199-6
Culig Z, Santer FR, 2014, Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev, 33(2-3): 413–427. https://doi.org/10.1007/s10555-013-9474-0
Swatek KN, Komander D, 2016, Ubiquitin modifications. Cell Res, 26(4): 399–422. https://doi.org/10.1038/cr.2016.39
Huang YT, Cheng AC, Tang HC, et al., 2021, USP7 facilitates SMAD3 autoregulation to repress cancer progression in p53-deficient lung cancer. Cell Death Dis, 12(10): 880. https://doi.org/10.1038/s41419-021-04176-8
Jiang S, Wang X, He Y, et al., 2021, Suppression of USP7 induces BCR-ABL degradation and chronic myelogenous leukemia cell apoptosis. Cell Death Dis, 12(5):456. https://doi.org/10.1038/s41419-021-03732-6
Ji L, Lu B, Zamponi R, et al., 2019, USP7 inhibits Wnt/β- catenin signaling through promoting stabilization of Axin. Nat Commun, 10(1): 4184. https://doi.org/10.1038/s41467-019-12143-3
Lee YR, Chen M, Lee JD, et al., 2019, Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science, 364(6441): eaau0159. https://doi.org/10.1126/science.aau0159
Wang G, Zhuang Z, Shen S, et al., 2022, Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1. Hum Cell, 35(3): 896–908. https://doi.org/10.1007/s13577-022-00681-w
He YM, Zhou XM, Jiang SY, et al., 2022, TRIM25 activates AKT/mTOR by inhibiting PTEN via K63-linked polyubiquitination in non-small cell lung cancer. Acta Pharmacol Sin, 43(3): 681–691. https://doi.org/10.1038/s41401-021-00662-z
Trotman LC, Wang X, Alimonti A, et al., 2007, Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 128(1): 141–156. https://doi.org/10.1016/j.cell.2006.11.040
van der Horst A, de Vries-Smits AM, Brenkman AB, et al., 2006, FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol, 8(10): 1064–1073. https://doi.org/10.1038/ncb1469
Qian J, Pentz K, Zhu Q, et al., 2015, USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene, 34(36): 4791–4796. https://doi.org/10.1038/onc.2014.394
Sarkari F, Sanchez-Alcaraz T, Wang S, et al., 2009, EBNA1- mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathog, 5(10): e1000624.
Wu HT, Kuo YC, Hung JJ, et al., 2016, K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat Commun, 7: 13644. https://doi.org/10.1038/ncomms13644
Chen ST, Okada M, Nakato R, et al., 2015, The deubiquitinating enzyme USP7 regulates androgen receptor activity by modulating its binding to chromatin. J Biol Chem, 290(35): 21713–21723. https://doi.org/10.1074/jbc.M114.628255
Liang L, Peng Y, Zhang J, et al., 2019, Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica, 104(11): 2178–2187.
Mitxitorena I, Somma D, Mitchell JP, et al., 2020, The deubiquitinase USP7 uses a distinct ubiquitin-like domain to deubiquitinate NF-ĸB subunits. J Biol Chem, 295(33): 11754–11763. https://doi.org/10.1074/jbc.RA120.014113
Song N, Cao C, Tian S, et al., 2020, USP7 Deubiquitinates and stabilizes SIRT1. Anat Rec (Hoboken), 303(5): 1337–1345. https://doi.org/10.1002/ar.24252
Pan T, Li X, Li Y, et al., 2021, USP7 inhibition induces apoptosis in glioblastoma by enhancing ubiquitination of ARF4. Cancer Cell Int, 21(1): 508. https://doi.org/10.1186/s12935-021-02208-z
Han Y, Yun CC, 2020, Ubiquitin-specific peptidase 7 (USP7) and USP10 mediate deubiquitination of human NHE3 regulating its expression and activity. Faseb J, 34(12): 16476– 16488. https://doi.org/10.1096/fj.202001875R
Yuan Y, Miao Y, Zeng C, et al., 2020, Small-molecule inhibitors of ubiquitin-specific protease 7 enhance Type-I interferon antiviral efficacy by destabilizing SOCS1. Immunology, 159(3): 309–321. https://doi.org/10.1111/imm.13147
Yan G, Liu N, Tian J, et al., 2021, Deubiquitylation and stabilization of ARMC5 by ubiquitin-specific processing protease 7 (USP7) are critical for RCC proliferation. J Cell Mol Med, 25(6): 3149–3159. https://doi.org/10.1111/jcmm.16306
Meulmeester E, Maurice MM, Boutell C, et al., 2005, Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol Cell, 18(5): 565–576. https://doi.org/10.1016/j.molcel.2005.04.024
Palazón-Riquelme P, Worboys JD, Green J, et al., 2018, USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Rep, 19(10): e44766. https://doi.org/10.15252/embr.201744766
Dong X, Xu X, Yang C, et al., 2021, USP7 regulates the proliferation and differentiation of ATDC5 cells through the Sox9-PTHrP-PTH1R axis. Bone, 143: 115714. https://doi.org/10.1016/j.bone.2020.115714
Tavana O, Li D, Dai C, et al., 2016, HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med, 22(10): 1180–1186. https://doi.org/10.1038/nm.4180
Perry M, Biegert M, Kollala SS, et al., 2021, USP11 mediates repair of DNA-protein cross-links by deubiquitinating SPRTN metalloprotease. J Biol Chem, 296: 100396. https://doi.org/10.1016/j.jbc.2021.100396
Nguyen LK, Muñoz-García J, Maccario H, et al., 2011, Switches, excitable responses and oscillations in the Ring1B/ Bmi1 ubiquitination system. PLoS Comput Biol, 7(12): e1002317. https://doi.org/10.1371/journal.pcbi.1002317
Shan H, Li X, Xiao X, et al., 2018, USP7 deubiquitinates and stabilizes NOTCH1 in T-cell acute lymphoblastic leukemia. Signal Transduct Target Ther, 3: 29. https://doi.org/10.1038/s41392-018-0028-3
Lecona E, Rodriguez-Acebes S, Specks J, et al., 2016, USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol, 23(4): 270–277. https://doi.org/10.1038/nsmb.3185
Giovinazzi S, Sirleto P, Aksenova V, et al., 2014, Usp7 protects genomic stability by regulating Bub3. Oncotarget, 5(11): 3728–3742. https://doi.org/10.18632/oncotarget.1989
Yamaguchi L, Nishiyama A, Misaki T, et al., 2017, Usp7-dependent histone H3 deubiquitylation regulates maintenance of DNA methylation. Sci Rep, 7(1): 55. https://doi.org/10.1038/s41598-017-00136-5
Han JJW, Ho DV, Kim HM, et al., 2021, The deubiquitinating enzyme USP7 regulates the transcription factor Nrf1 by modulating its stability in response to toxic metal exposure. J Biol Chem, 296: 100732. https://doi.org/10.1016/j.jbc.2021.100732
Dar A, Shibata E, Dutta A, 2013, Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol, 33(16): 3309–3320. https://doi.org/10.1128/MCB.00358-13
Das S, Chandrasekaran AP, Jo KS, et al., 2020, HAUSP stabilizes Cdc25A and protects cervical cancer cells from DNA damage response. Biochim Biophys Acta Mol Cell Res, 1867(12): 118835. https://doi.org/10.1016/j.bbamcr.2020.118835
Qing P, Han L, Bin L, et al., 2011, USP7 regulates the stability and function of HLTF through deubiquitination. J Cell Biochem, 112(12): 3856–3862. https://doi.org/10.1002/jcb.23317
Zemp I, Lingner J, 2014, The shelterin component TPP1 is a binding partner and substrate for the deubiquitinating enzyme USP7. J Biol Chem, 289(41): 28595–28606. https://doi.org/10.1074/jbc.M114.596056
Galarreta A, Valledor P, Ubieto-Capella P, et al., 2021, USP7 limits CDK1 activity throughout the cell cycle. Embo J, 40(11): e99692. https://doi.org/10.15252/embj.201899692
Holowaty MN, Sheng Y, Nguyen T, et al., 2003, Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem, 278(48): 47753–47761. https://doi.org/10.1074/jbc.M307200200
Zhao XB, Ji FY, Li HR, et al., 2020, P22077 inhibits LPS-induced inflammatory response by promoting K48-linked ubiquitination and degradation of TRAF6. Aging (Albany NY), 12(11): 10969–10982. https://doi.org/10.18632/aging.103309
Alonso-de Vega I, Martín Y, Smits VA, 2014, USP7 controls Chk1 protein stability by direct deubiquitination. Cell Cycle, 13(24): 3921–3926. https://doi.org/10.4161/15384101.2014.973324
Daubeuf S, Singh D, Tan Y, et al., 2009, HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood, 113(14): 3264–3275. https://doi.org/10.1182/blood-2008-07-168203
Spardy N, Covella K, Cha E, et al., 2009, Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res, 69(17): 7022–7029. https://doi.org/10.1158/0008-5472.CAN-09-0925
Zaman MM, Nomura T, Takagi T, et al., 2013, Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol, 33(24): 4971–4984. https://doi.org/10.1128/MCB.00465-13
Yoshihara H, Fukushima T, Hakuno F, et al., 2012, Insulin/ insulin-like growth factor (IGF) stimulation abrogates an association between a deubiquitinating enzyme USP7 and insulin receptor substrates (IRSs) followed by proteasomal degradation of IRSs. Biochem Biophys Res Commun, 423(1): 122–127. https://doi.org/10.1016/j.bbrc.2012.05.093
Sarkari F, Wheaton K, La Delfa A, et al., 2013, Ubiquitin-specific protease 7 is a regulator of ubiquitin-conjugating enzyme UbE2E1. J Biol Chem, 288(23): 16975–16985. https://doi.org/10.1074/jbc.M113.469262
Bhattacharya S, Ghosh MK, 2015, HAUSP regulates c-MYC expression via de-ubiquitination of TRRAP. Cell Oncol (Dordr), 38(4): 265–277. https://doi.org/10.1007/s13402-015-0228-6
Li N, Zhao Z, Liu P, et al., 2021, Upregulation of deubiquitinase USP7 by transcription factor FOXO6 promotes EC progression via targeting the JMJD3/CLU axis. Mol Ther Oncolytics, 20: 583–595. https://doi.org/10.1016/j.omto.2020.12.008
Episkopou H, Diman A, Claude E, et al., 2019, TSPYL5 depletion induces specific death of ALT cells through USP7- dependent proteasomal degradation of POT1. Mol Cell, 75(3): 469–482.e466. https://doi.org/10.1016/j.molcel.2019.05.027
Felle M, Joppien S, Németh A, et al., 2011, The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res, 39(19): 8355–8365. https://doi.org/10.1093/nar/gkr528
Zhu Q, Ding N, Wei S, et al., 2020, USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage. Cell Cycle, 19(1): 124–141. https://doi.org/10.1080/15384101.2019.1695996
Lu X, Zhang Y, Zheng Y, et al., 2021, The miRNA-15b/USP7/ KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy. J Cell Mol Med, 25(4): 2069–2081. https://doi.org/10.1111/jcmm.16139
Lee KW, Cho JG, Kim CM, et al., 2013, Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity. J Biol Chem, 288(46): 32886–32896. https://doi.org/10.1074/jbc.M113.496331
Salsman J, Jagannathan M, Paladino P, et al., 2012, Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol, 86(2): 806–820. https://doi.org/10.1128/JVI.05442-11
Heimbucher T, Hunter T, 2015, The C. elegans ortholog of USP7 controls DAF-16 stability in insulin/IGF-1-like signaling. Worm, 4(4): e1103429. https://doi.org/10.1080/21624054.2015.1103429
Jäger W, Santag S, Weidner-Glunde M, et al., 2012, The ubiquitin-specific protease USP7 modulates the replication of Kaposi’s sarcoma-associated herpesvirus latent episomal DNA. J Virol, 86(12): 6745–6757. https://doi.org/10.1128/JVI.06840-11
Maertens GN, El Messaoudi-Aubert S, Elderkin S, et al., 2010, Ubiquitin-specific proteases 7 and 11 modulate polycomb regulation of the INK4a tumour suppressor. Embo J, 29(15): 2553–2565. https://doi.org/10.1038/emboj.2010.129
Sarasin A, 2012, UVSSA and USP7: New players regulating transcription-coupled nucleotide excision repair in human cells. Genome Med, 4(5): 44. https://doi.org/10.1186/gm343
Frey Y, Franz-Wachtel M, Macek B, et al., 2022, Proteasomal turnover of the RhoGAP tumor suppressor DLC1 is regulated by HECTD1 and USP7. Sci Rep, 12(1): 5036.
Yi L, Cui Y, Xu Q, et al., 2016, Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol Rep, 36(5): 2935–2945. https://doi.org/10.3892/or.2016.5099
Xiang Q, Ju H, Li Q, et al., 2018, Human herpesvirus 8 interferon regulatory factors 1 and 3 mediate replication and latency activities via interactions with USP7 deubiquitinase. J Virol, 92(7): e02003–17. https://doi.org/10.1128/JVI.02003-17
Du Z, Song J, Wang Y, et al., 2010, DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal, 3(146): ra80. https://doi.org/10.1126/scisignal.2001462
Bhattacharya S, Ghosh MK, 2014, HAUSP, a novel deubiquitinase for Rb MDM2 the critical regulator. Febs J, 281(13): 3061–3078. https://doi.org/10.1111/febs.12843
Lee HR, Choi WC, Lee S, et al., 2011, Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat Struct Mol Biol, 18(12): 1336–1344. https://doi.org/10.1038/nsmb.2142
Ching W, Koyuncu E, Singh S, et al., 2013, A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation. PLoS Pathog, 9(3): e1003273. https://doi.org/10.1371/journal.ppat.1003273
Yang P, Xie J, Li Y, et al., 2020, Deubiquitinase USP7-mediated MCL-1 up-regulation enhances arsenic and benzo(a)pyrene co-exposure-induced cancer stem cell-like property and tumorigenesis. Theranostics, 10(20): 9050–9065. https://doi.org/10.7150/thno.47897
Huang Q, Qin D, Pei D, et al., 2022, UBE2O and USP7 co-regulate RECQL4 ubiquitinylation and homologous recombination-mediated DNA repair. FASEB J, 36(1): e22112. https://doi.org/10.1096/fj.202100974RRR
Wu Y, Gu H, Bao Y, et al., 2022, USP7 sustains an active epigenetic program via stabilizing MLL2 and WDR5 in diffuse large B-cell lymphoma. Cell Biochem Funct, 40(4): 379–390. https://doi.org/10.1002/cbf.3702
Holowaty MN, Zeghouf M, Wu H, et al., 2003, Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem, 278(32): 29987–29994. https://doi.org/10.1074/jbc.M303977200
Meulmeester E, Pereg Y, Shiloh Y, et al., 2005, ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle, 4(9): 1166–1170. https://doi.org/10.4161/cc.4.9.1981
de Bie P, Zaaroor-Regev D, Ciechanover A, 2010, Regulation of the Polycomb protein RING1B ubiquitination by USP7. Biochem Biophys Res Commun, 400(3): 389–395. https://doi.org/10.1016/j.bbrc.2010.08.082
He J, Zhu Q, Wani G, et al., 2014, Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem, 289(39): 27278– 27289. https://doi.org/10.1074/jbc.M114.589812
Xia X, Liao Y, Huang C, et al., 2019, Deubiquitination and stabilization of estrogen receptor α by ubiquitin-specific protease 7 promotes breast tumorigenesis. Cancer Lett, 465: 118–128. https://doi.org/10.1016/j.canlet.2019.09.003
Sun X, Ding Y, Zhan M, et al., 2019, Usp7 regulates Hippo pathway through deubiquitinating the transcriptional coactivator Yorkie. Nat Commun, 10(1): 411. https://doi.org/10.1038/s41467-019-08334-7
Lee JE, Park CM, Kim JH, 2020, USP7 deubiquitinates and stabilizes EZH2 in prostate cancer cells. Genet Mol Biol, 43(2): e20190338. https://doi.org/10.1590/1678-4685-GMB-2019-0338
Khoronenkova SV, Dianov GL, 2013, USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res, 41(3): 1750–1756. https://doi.org/10.1093/nar/gks1359
Zhu Q, Sharma N, He J, et al., 2015, USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle, 14(9): 1413–1425. https://doi.org/10.1080/15384101.2015.1007785
Ni W, Lin S, Bian S, et al., 2020, USP7 mediates pathological hepatic de novo lipogenesis through promoting stabilization and transcription of ZNF638. Cell Death Dis, 11(10): 843.
Franqui-Machin R, Hao M, Bai H, et al., 2018, Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. J Clin Invest, 128(7): 2877–2893. https://doi.org/10.1172/JCI98765
Kim JM, Yang YS, Park KH, et al., 2020, A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun, 11(1): 2289. https://doi.org/10.1038/s41467-020-16038-6
Ma P, Yang X, Kong Q, et al., 2014, The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7- mediated deubiquitination of β-catenin. Mol Cell Biol, 34(23): 4355–4366. https://doi.org/10.1128/MCB.00731-14
Jang SY, Jang SW, Ko J, 2012, Regulation of ADP-ribosylation factor 4 expression by small leucine zipper protein and involvement in breast cancer cell migration. Cancer Lett, 314(2): 185–197. https://doi.org/10.1016/j.canlet.2011.09.028
Hofseth LJ, Hussain SP, Harris CC, 2004, p53: 25 years after its discovery. Trends Pharmacol Sci, 25(4): 177–181. https://doi.org/10.1016/j.tips.2004.02.009
Sabapathy K, Lane DP, 2018, Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol, 15(1): 13–30. https://doi.org/10.1038/nrclinonc.2017.151
Kruse JP, Gu W, 2009, Modes of p53 regulation. Cell, 137(4): 609–622. https://doi.org/10.1016/j.cell.2009.04.050
Momand J, Zambetti GP, Olson DC, et al., 1992, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69(7): 1237–1245. https://doi.org/10.1016/0092-8674(92)90644-r
Hu M, Gu L, Li M, et al., 2006, Structural basis of competitive recognition of p53 and MDM2 by HAUSP/ USP7: Implications for the regulation of the p53-MDM2 pathway. PLoS Biol, 4(2): e27. https://doi.org/10.1371/journal.pbio.0040027
Sheng Y, Saridakis V, Sarkari F, et al., 2006, Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol, 13(3): 285–291. https://doi.org/10.1038/nsmb1067
Cummins JM, Rago C, Kohli M, et al., 2004, Tumour suppression: Disruption of HAUSP gene stabilizes p53. Nature, 428(6982):1 p following 486. https://doi.org/10.1038/nature02501
Ali A, Raja R, Farooqui SR, et al., 2017, USP7 deubiquitinase controls HIV-1 production by stabilizing Tat protein. Biochem J, 474(10): 1653–1668. https://doi.org/10.1042/BCJ20160304
Gao L, Zhu D, Wang Q, et al., 2021, Proteome analysis of USP7 substrates revealed its role in melanoma through PI3K/Akt/FOXO and AMPK pathways. Front Oncol, 11: 650165. https://doi.org/10.3389/fonc.2021.650165
Yao Y, Zhang Y, Shi M, et al., 2018, Blockade of deubiquitinase USP7 overcomes bortezomib resistance by suppressing NF-κB signaling pathway in multiple myeloma. J Leukoc Biol, 104(6): 1105–1115. https://doi.org/10.1002/JLB.2A1017-420RR
Cai J, Chen HY, Peng SJ, et al., 2018, USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. Faseb J, 32(10): 5238–5249. https://doi.org/10.1096/fj.201700473RR
Colleran A, Collins PE, O’Carroll C, et al., 2013, Deubiquitination of NF-κB by ubiquitin-specific protease-7 promotes transcription. Proc Natl Acad Sci U S A, 110(2): 618–623. https://doi.org/10.1073/pnas.1208446110
Zeng M, Zhang X, Xing W, et al., 2022, Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway. Toxicol Lett, 359: 31–45. https://doi.org/10.1016/j.toxlet.2022.01.017
Duan D, Shang M, Han Y, et al., 2022, EZH2-CCF-cGAS Axis Promotes Breast Cancer Metastasis. Int J Mol Sci, 23(3): 1788. https://doi.org/10.3390/ijms23031788
Qi SM, Cheng G, Cheng XD, et al., 2020, Targeting USP7- mediated deubiquitination of MDM2/MDMX-p53 pathway for cancer therapy: Are we there yet? Front Cell Dev Biol, 8: 233. https://doi.org/10.3389/fcell.2020.00233
Cheng X, Zhang B, Guo F, et al., 2022, Deubiquitination of FBP1 by USP7 blocks FBP1-DNMT1 interaction and decreases the sensitivity of pancreatic cancer cells to PARP inhibitors. Mol Oncol, 16(7): 1591–1607. https://doi.org/10.1002/1878-0261.13149
Zhang T, Periz G, Lu YN, et al., 2020, USP7 regulates ALS-associated proteotoxicity and quality control through the NEDD4L-SMAD pathway. Proc Natl Acad Sci U S A, 117(45): 28114–28125. https://doi.org/10.1073/pnas.2014349117
Hou R, Li Y, Luo X, et al., 2022, ENKUR expression induced by chemically synthesized cinobufotalin suppresses malignant activities of hepatocellular carcinoma by modulating β-catenin/c-Jun/MYH9/USP7/c-Myc axis. Int J Biol Sci, 18(6): 2553–2567. https://doi.org/10.7150/ijbs.67476
Tang LJ, Zhou YJ, Xiong XM, et al., 2021, Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/ TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med, 162: 339–352. https://doi.org/10.1016/j.freeradbiomed.2020.10.307
Yang X, Jin J, Yang J, et al., 2021, Expression of ubiquitin-specific protease 7 in oral squamous cell carcinoma promotes tumor cell proliferation and invasion. Genet Mol Biol, 44(4): e20210058. https://doi.org/10.1590/1678-4685-GMB-2021-0058
Li T, Guan J, Li S, et al., 2014, HSCARG downregulates NF-κB signaling by interacting with USP7 and inhibiting NEMO ubiquitination. Cell Death Dis, 5(5): e1229. https://doi.org/10.1038/cddis.2014.197
Liu G, Liu Q, Yan B, et al., 2020, USP7 inhibition alleviates H(2)O(2)-induced injury in chondrocytes via inhibiting NOX4/NLRP3 pathway. Front Pharmacol, 11: 617270. https://doi.org/10.3389/fphar.2020.617270
Forand A, Koumakis E, Rousseau A, et al., 2016, Disruption of the phosphate transporter Pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep, 16(10): 2736–2748. https://doi.org/10.1016/j.celrep.2016.08.012
Li Q, Sun H, Luo D, et al., 2021, Lnc-RP11-536 K7.3/SOX2/ HIF-1α signaling axis regulates oxaliplatin resistance in patient-derived colorectal cancer organoids. J Exp Clin Cancer Res, 40(1): 348. https://doi.org/10.1186/s13046-021-02143-x
Zhou Z, Yao X, Li S, et al., 2015, Deubiquitination of Ci/ Gli by Usp7/hausp regulates hedgehog signaling. Dev Cell, 34(1): 58–72. https://doi.org/10.1016/j.devcel.2015.05.016
Wilson P, Abdelmoti L, Norcross R, et al., 2021, The role of USP7 in the Shoc2-ERK1/2 signaling axis and noonan-like syndrome with loose anagen hair. J Cell Sci, 134(21): jcs258922. https://doi.org/10.1242/jcs.258922
von Locquenghien M, Rozalén C, Celià-Terrassa T, 2021, Interferons in cancer immunoediting: Sculpting metastasis and immunotherapy response. J Clin Invest, 131(1): e143296. https://doi.org/10.1172/JCI143296
Takaoka A, Yanai H, 2006, Interferon signalling network in innate defence. Cell Microbiol, 8(6): 907–922. https://doi.org/10.1111/j.1462-5822.2006.00716.x
Chu TS, 1974, Interferon and its clinical application. Zhonghua Yi Xue Za Zhi, 9: 576–579.
Xu LG, Wang YY, Han KJ, et al., 2005, VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 19(6): 727–740. https://doi.org/10.1016/j.molcel.2005.08.014
Fitzgerald KA, McWhirter SM, Faia KL, et al., 2003, IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4(5): 491–496. https://doi.org/10.1038/ni921
Yu CF, Peng WM, Schlee M, et al., 2018, SOCS1 and SOCS3 target IRF7 degradation to suppress TLR7-mediated Type I IFN production of human plasmacytoid dendritic cells. J Immunol, 200(12): 4024–4035. https://doi.org/10.4049/jimmunol.1700510
Blumer T, Coto-Llerena M, Duong FHT, et al., 2017, SOCS1 is an inducible negative regulator of interferon λ (IFN- λ)-induced gene expression in vivo. J Biol Chem, 292(43): 17928–17938. https://doi.org/10.1074/jbc.M117.788877
Ding L, Li J, Li W, et al., 2018, p53 mediated IFN-β signaling to affect viral replication upon TGEV infection. Vet Microbiol, 227: 61–68. https://doi.org/10.1016/j.vetmic.2018.10.025
Lee HR, Toth Z, Shin YC, et al., 2009, Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol, 83(13): 6739–6747. https://doi.org/10.1128/JVI.02353-08
Li X, Wang T, Tao Y, et al., 2022, Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai), 54(3): 311–320. https://doi.org/10.3724/abbs.2022003
Mandras SA, Mehta HS, Vaidya A, 2020, Pulmonary hypertension: A brief guide for clinicians. Mayo Clin Proc, 95(9): 1978–1988. https://doi.org/10.1016/j.mayocp.2020.04.039
Poch D, Mandel J, 2021, Pulmonary hypertension. Ann Intern Med, 174(4): ITC49–ITC64. https://doi.org/10.7326/AITC202104200
Zhu Y, Zhang Q, Yan X, et al., 2021, Ubiquitin-specific protease 7 mediates platelet-derived growth factor-induced pulmonary arterial smooth muscle cells proliferation. Pulm Circ, 11(4): 20458940211046131. https://doi.org/10.1177/20458940211046131
Uhlen M, Zhang C, Lee S, et al., 2017, A pathology atlas of the human cancer transcriptome. Science, 357(6352): eaan2507. https://doi.org/10.1126/science.aan2507
Davoodpour P, Landström M, Welsh M, 2007, Reduced tumor growth in vivo and increased c-Abl activity in PC3 prostate cancer cells overexpressing the Shb adapter protein. BMC Cancer, 7: 161.
Qu CF, Chen TY, Wang YT, et al., 2018, Primary prevention model of liver cancer in rural China. Zhonghua Zhong Liu Za Zhi, 40(7): 481–489. https://doi.org/10.3760/cma.j.issn.0253-3766.2018.07.001
Dong L, Yu L, Bai C, et al., 2018, USP27-mediated cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis. Oncogene, 37(20): 2702–2713. https://doi.org/10.1038/s41388-018-0137-z
Zhang W, Zhang J, Xu C, et al., 2020, Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int, 20: 28. https://doi.org/10.1186/s12935-020-1109-2
Cai JB, Shi GM, Dong ZR, et al., 2015, Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology, 61(5): 1603–1614. https://doi.org/10.1002/hep.27682
Chauhan D, Tian Z, Nicholson B, et al., 2012, A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell, 22(3): 345–358.
Colland F, Formstecher E, Jacq X, et al., 2009, Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther, 8(8): 2286–2295. https://doi.org/10.1158/1535-7163.MCT-09-0097
Nicholson B, Suresh Kumar KG, 2011, The multifaceted roles of USP7: New therapeutic opportunities. Cell Biochem Biophys, 60(1–2): 61–68.
Reverdy C, Conrath S, Lopez R, et al., 2012, Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol, 19(4): 467–477. https://doi.org/10.1016/j.chembiol.2012.02.007
Altun M, Kramer HB, Willems LI, et al., 2011, Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol, 18(11): 1401–1412. https://doi.org/10.1016/j.chembiol.2011.08.018
Fan YH, Cheng J, Vasudevan SA, et al., 2013, USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53- mediated apoptosis. Cell Death Dis, 4(10): e867. https://doi.org/10.1038/cddis.2013.400
Shin SB, Kim CH, Jang HR, 2020, Combination of inhibitors of USP7 and PLK1 has a strong synergism against paclitaxel resistance. Int J Mol Sci, 21(22): 8629. https://doi.org/10.3390/ijms21228629
Fu C, Zhu X, Xu P, et al., 2019, Pharmacological inhibition of USP7 promotes antitumor immunity and contributes to colon cancer therapy. Oncol Targets Ther, 12: 609–617. https://doi.org/10.2147/OTT.S182806
Yang L, Cao N, Miao Y, et al., 2021, Morin acts as a USP7 inhibitor to hold back the migration of rheumatoid arthritis fibroblast-like synoviocytes in a “Prickle1-mTORC2” dependent manner. Mol Nutr Food Res, 65(19): e2100367. https://doi.org/10.1002/mnfr.202100367
Yu Z, Wei X, Liu L, et al., 2022, Indirubin-3’-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine, 78: 103950. https://doi.org/10.1016/j.ebiom.2022.103950
Hu T, Zhang J, Sha B, et al., 2019, Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Mol Carcinog, 58(1): 42–54. https://doi.org/10.1002/mc.22905
Becker K, Marchenko ND, Palacios G, et al., 2008, A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle, 7(9): 1205–1213. https://doi.org/10.4161/cc.7.9.5756