Nonparametric graduation techniques as a common framework for the description of demographic patterns
The graduation of age-specific demographic rates is a subject of special interest in many dis-ciplines as demography, biostatistics, actuarial practice, and social planning. For estimating the unknown age-specific probabilities of the various demographic phenomena, some graduation technique must be applied to the corresponding empirical rates, under the assumption that the true probabilities follow a smooth pattern through age. The classical way for graduating demographic rates is parametric modelling. However, for graduation purposes, nonparametric techniques can also be adapted. This work provides an adaptation, and an evaluation of kernels and Support Vector Machines (SVM) in the context of graduation of demographic rates.
Aronszajn N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68: 337–404. http://dx.doi.org/10.1090/S0002-9947-1950-0051437-7.
Berkeley mortality database. (2005). Retrieved on October 29, 2015 from http://www.demog.berkeley.edu/~bmd.
Brass W. (1971). Mortality models and their use in demography. Transactions of the Faculty of Actuaries, 33: 123–142. http://dx.doi.org/10.1017/S0071368600005164.
Brockmann M, Gasser T and Herrmann E. (1993). Locally adaptive bandwidth choice for kernel regression estima-tors. Journal of the American Statistical Association, 88(424): 1302–1309. http://dx.doi.org/10.1080/ 01621459.1993.10476411.
Chandola T, Coleman D A and Hiorns R W. (1999). Recent European fertility patterns: fitting curves to ‘distorted’ distributions. Population Studies, 53(3): 317–329. http://dx.doi.org/10.1080/00324720308089.
Chandola T, Coleman D A and Hiorns R W. (2002). Distinctive features of age-specific fertility profiles in the Eng-lish-speaking world: common patterns in Australia, Canada, New Zealand and the United States, 1970-98. Popu-lation Studies, 56(2): 181–200. http://dx.doi.org/10.1080/00324720215929.
Chongfuangprinya P, Kim S B, Park S K, et al. (2011). Integration of support vector machines and control charts for multivariate process monitoring. Journal of Statistical Computation and Simulation, 81(9): 1157–1173. http://dx.doi.org/10.1080/00949651003789074.
Coale A J and McNeil D R. (1972). The distribution by age of the frequency of first marriage in a female cohort. Journal of the American Statistical Association, 67(340): 743–749. http://dx.doi.org/10.1080/01621459. 1972.10481287.
Copas J B and Haberman S. (1983). Non-parametric graduation using kernel methods. Journal of Institute of Actuar-ies, 110(1): 135–156. http://dx.doi.org/10.1017/S0020268100041275
Erdogan B E. (2013). Prediction of bankruptcy using support vector machines: an application to bank bankruptcy. Journal of Statistical Computation and Simulation, 83(8): 1543–1555. http://dx.doi.org/10.1080/00949655.2012.666550.
Felipe A, Guillen M and Nielsen J P. (2001). Longevity studies based on kernel hazard estimation. Insurance Mathe-matics and Economics, 28(2): 191–204. http://dx.doi.org/10.1016/S0167-6687(00)00076-7.
Forfar D O, McCutcheon J J and Wilkie A D. (1988). On graduation by mathematical formula. Journal of the Institute of Actuaries, 115(1): 1–149. http://dx.doi.org/10.1017/S0020268100042633.
Gasser T, Kneip A and Köhler W. (1991). A flexible and fast method for automatic smoothing. Journal of the Ameri-can Statistical Society, 86(415): 643–652. http://dx.doi.org/10.1080/01621459.1991.10475090.
Gasser T and Müller H G. (1979). Kernel estimation of regression functions. In Th Gasser and M Rosenblatt (eds), Lecture Notes in Mathematics: Smoothing Techniques for Curve Estimation, 757: 23–68. Berlin: Springer. http://dx.doi.org/10.1007/BFb0098489.
Gasser T and Müller H G. (1984). Estimating regression functions and their derivatives by the kernel method. Scan-dinavian Journal of Statistics, 11: 171–185.
Gavin J, Haberman S and Verrall R J. (1993). Moving weighted average graduation using kernel estimation. Insur-ance: Mathematics and Economics, 12(2): 113–126. http://dx.doi.org/10.1016/0167-6687(93)90821-6.
Gavin J B, Haberman S and Verrall R J. (1994). On the choice of bandwidth for kernel graduation. Journal of the Institute of Actuaries, 121(1): 119–134. http://dx.doi.org/10.1017/S0020268100020102.
Gilje E. (1969). Fitting curves to age-specific fertility rates: some examples. Statistical Review of the Swedish Na-tional Central Bureau of Statistics III, 7: 118–134.
Gill P E and Marray W. (1978). Algorithms for the solution of a non-linear least squares problem. SIAM Journal of Numerical Analysis, 15(5): 977–992. http://dx.doi.org/10.1137/0715063.
Hadwiger H. (1940). Eineanalytischereprodutions-funktion fur biologischeGesamtheiten. SkandinaviskA-ktuarietidskrift. 23: 101–113.
Hannerz H. (1999). Methodology and Applications of a New Law of Mortality. Lund: Department of Statistics, Uni-versity of Lund, Sweden.
Härdle W. (1990). Applied Non-parametric Regression. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CCOL0521382483.
Härdle W. (1991). Smoothing Techniques with Implementation in S. New York: Springer New York. http://dx.doi.org/10.1007/978-1-4612-4432-5.
Heligman M and Pollard J H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 107(1): 49–80. http://dx.doi.org/10.1017/S0020268100040257.
Hermann E. (1997). Local bandwidth choice in kernel regression estimation. Journal of Computational and Graphi-cal Statistics, 6(1): 35–54. http://dx.doi.org/10.1080/10618600.1997.10474726.
Hoem J M, Madsen D, Nielsen J L, et al. (1981). Experiments in modelling recent Danish fertility curves. Demogra-phy, 18(2): 231–244. http://dx.doi.org/10.2307/2061095.
Karlis D and Kostaki A. (2000). Bootstrap techniques for mortality models. Biometrical Journal, 44(7): 850–866. http://dx.doi.org/10.1002/1521-4036(200210)44:7%3C850::AID-BIMJ850%3E3.0.CO;2-6.
Kaneko R. (1991). Demographic analysis of the first marriage process. Jinko Mondai Kenkyu, 47(3): 3–27.
Kaneko R. (2003). Elaboration of the Coale-McNeil nuptiality model as the generalised log gamma distribution: a new identity and empirical enhancements. Demographic Research, 9(10): 223–262. http://dx.doi.org/10.4054/DemRes.2003.9.10.
Keyfitz N. (1982). Choice of function for mortality analysis: effective forecasting depends on a minimum parameter representation. Theoretical Population Biology, 21(3): 329–352. http://dx.doi.org/10.1016/0040-5809(82)90022-3.
Kostaki A. (1992). Nine-parameter version of the Heligman-Pollard formula. Mathematical Population Studies, 3(4): 277–288. http://dx.doi.org/10.1080/08898489209525346.
Kostaki A and Peristera P. (2007). Modeling fertility in modern populations. Demographic Research, 16: 141–194. http://dx.doi.org/10.4054/DemRes.2007.16.6.
Liang Z. (2000). The Coale-McNeil model: theory, generalisation and application. Retrieved on October 20, 2016 from http://www.popline.org/node/172229.
Mode C J and Busby R C. (1982). An eight-parameter model of human mortality —the single decrement case. Bulle-tin of Mathematical Biology, 44(5): 647–659. http://dx.doi.org/10.1007/BF02462273.
Moguerza J M and Muñoz A. (2006). Support vector machines with applications. Statistical Science, 21(3): 322–336. http://dx.doi.org/10.1214/088342306000000493.
Moguerza J M, Muñoz A and Psarakis S. (2007). Monitoring nonlinear profiles using support vector machines, in L Rueda, D Mery and J Kittler (eds), Progress in Pattern Recognition, Image Analysis and Applications, 4789: 574–583. Berlin: Springer. http://dx.doi.org/10.1007/978-3-540-76725-1_60.
Muñoz A and Moguerza J M. (2005). Building smooth neighbourhood kernels via functional data analysis, in W Duch, J Kacprzyk, E Oja, et al. (eds), Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005, 3697: 631–636. Berlin: Springer. http://dx.doi.org/10.1007/11550907_100.
Ortega Osona J A and Kohler H P. (2000). A comment on “Recent European fertility patterns: fitting curves to ‘dis-torted’ distributions”, by T Chandola, D A Coleman and R W Hiorns. Population Studies, 54(3): 347–349. http://dx.doi.org/10.1080/713779092.
Pearce N D and Wand M P. (2006). Penalized splines and reproducing kernel methods. The American Statistician, 60(3): 233–240. http://dx.doi.org/10.1198/000313006X124541.
Peristera P and Kostaki A. (2005). An evaluation of the performance of kernel estimators for graduating mortality data. Journal of Population Research, 22: 185–197. http://dx.doi.org/10.1007/BF03031828.
Ruppert D, Sheather S J and Wand M P. (1995). An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association, 90 (432): 1257–1270. http://dx.doi.org/10.1080/01621459.1995.10476630.
Schmertmann C P. (2003). A system of model fertility schedules with graphically intuitive parameters. Demographic Research, 9: 82–110. http://dx.doi.org/10.4054/DemRes.2003.9.5.
Schölkopf B, Smola A J, Williamson RC, et al. (2000). New support vector algorithms. Neural Computation, 12(5): 1207–1245. http://dx.doi.org/10.1162/089976600300015565.
Tikhonov A N and Arsenin V Y. (1977). Solutions of Ill-posed Problems. New York: John Wiley and Sons. http://dx.doi.org/10.2307/2006360.
Vapnik V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4757-2440-0.